facebook  twitter  linkedin  pinterest  tumblr
Service Hotline
+86-13510974563
Tel:86-755-28772795
Email: sales@halnziye.com
搜索
Search
About Us
联系我们
Check category
/
/
Choosing the Right Thermal Interface Material

Choosing the Right Thermal Interface Material

  • Categories:Media
  • Author:
  • Origin:internet
  • Time of issue:2020-12-24 11:33
  • Views:

(Summary description)right thermal interface material

Choosing the Right Thermal Interface Material

(Summary description)right thermal interface material

  • Categories:Media
  • Author:
  • Origin:internet
  • Time of issue:2020-12-24 11:33
  • Views:
Information

There are several kinds of thermal interface materials available on market, thermal compound, thermal pad, thermal glue, thermally conductive encapsulation resin, thermal phase change pad etc., so which one is the best?

 

Understanding the dimensions – interface or gap filler?

 

Knowledge of the dimensions of your application is critical to the selection of appropriate thermal management materials. A thermal interface is the space between a component and its heat sink, and the thermally conductive media used in this space are referred to as thermal interface materials (TIMs). This space is usually very small, i.e. on the micron scale. A gap filling application, on the other hand, is more to do with the distance between a component and the metal housing that encloses an electronics assembly and is typically measured in millimetres. In this case, a thermally conductive material is used to help minimize the chances of hot spots within the unit itself while the casing is used as the heat sink.

The difference between a few microns and a few millimetres could be critical to the performance of the thermal medium chosen. For example, if you place a TIM in a gap filling application, it is likely to be unstable in the thicker layer: with vibration, or following a period of temperature cycling, it could easily be displaced. Likewise, if a gap filling material is used in a thermal interface application, it will be very difficult to achieve a thin, even film, creating a higher thermal resistance at the interface and consequently reduced heat transfer efficiency.

 

Bonding or non-bonding – paste or pad?

 

There are many different types of thermally conductive materials, and choosing between them will be dictated by production requirements and application design, as well as critical performance factors that must be achieved. For example, choosing between a bonding or non-bonding material may depend on whether the heat sink needs to be held in place by the interface material, in which case a bonding compound is the better choice. Alternatively, a compound that is fixed (does not move) may be required, in which case it may be appropriate to choose a thermal pad, which has the additional benefit of being pre-cut to size for ease of application.

 

However, both of these options may result in a thicker interface layer and therefore a higher thermal resistance. The trade-off then comes from the performance requirements of the chosen compounds and understanding the conditions of the application.

 

Maximizing heat transfer efficiency across a wide temperature range.

 

Thermal changes are common within heat dissipation applications because most devices are switched on and off, or have varying power requirements in use. In addition, environmental temperature changes can lead to extremes within the device – automotive applications are a good example, as these must also operate after being powered down in conditions well above and below what we would consider a standard ambient temperature.Thermal interface material

 

It is therefore critical that the chosen thermal dissipation media operates within the temperature limits defined for the device, while maintaining performance during changeable conditions. A typical problem is ‘pump-out’ whereby the stresses exerted by the minute changes in dimensions of the interface substrates can cause a non-curing interface material to move over time. The ability of a TIM to resist these stresses will improve the performance of the device over its lifetime and will be dependent upon the interfacial spacing, as well as the type and amount of TIM applied.

 

Where thermal effects are significant, it might be worth considering the use of phase change materials – non-curing, non-bonding products that change to a slightly softer material above their phase change temperature. The properties of these materials allow them to conform to the contours of the interface and provide a much lower thermal resistance than a cured product, whilst minimising the effects of pump-out, typically associated with non-curing products. However, if a phase change material is used in a device which typically operates below the phase change temperature, the material will remain in its solid form and will not provide the desired low thermal resistance.

 

Environmental conditions – is protection required?

 

Aside from thermal changes, there may be other environmental factors to consider. A thermal interface material or gap filler must also be resistant against other environmental conditions such as high humidity, salt mist, corrosive gases and so on. It is important to consider at the design stage whether or not these external factors could impact on the performance of the thermal compound. As a TIM is usually applied in a very thin layer between two substrates, it is unlikely to be fully exposed to such conditions; however, a gap filling material could be subject to more challenging environments, in which case the better approach would be to switch from a gap filler to a full protection compound, such as a thermally conductive encapsulation resin.

Keyword:

Scan the QR code to read on your phone

Next: None
Next: None
+86-755-28772795
Add: 3-4/F Bld.D Hehengxing Sci&Tech Park,No.19 Minqing Road,Longhua
District,Shenzhen China
Fax:+86-755-28772796
Email:sales@halnziye.com

Copyright© Shenzhen Halnziye Electronics Co.,Ltd 粤ICP备09218394号 深圳市市场监督管理局企业主体身份公示 Powered by www.300.cn